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PROBLEM SET 12
Due at 5 PM on Friday, November 19, 2004

Problems 60-65 provide experience with interference, temporal and transverse coherence, and multiple
films.

60. Interference of two beams following
different paths.
Consider two beams A and B. At (early) plane
P , the relative properties of the two beams
are well understood; for example, a single laser
beam may be split into two. Between plane P
and (late) plane Q, the beams follow different
paths A and B through a nondispersive medium
(vgroup = vphase); by the time they reach plane Q
they have recombined. (For example, a Michel-
son interferometer may be interposed between
the two planes.) At P and Q define

physical �EA,B(P, Q) ≡ Re
(
�EA,B

P,Q e−iωt
)

(this is four equations). On the left-hand side are
physical fields that vary rapidly (≈ sinusoidally)
with time t; on the right-hand side are complex
fields �EA,B

P,Q having magnitudes that are fixed,
but phases that vary more slowly, over many
sinusoidal periods. This slow variation may oc-
cur separately for the x and y components of a
beam’s electric field – in which case the beam
is completely unpolarized – or it may occur in
lockstep for the x and y components together,
in which case the beam remains fully polarized.

The optical phase shifts for paths A and B are
equal to

ωτA,B ≡
∫ Q

P

�kA,B · d�rA,B

τ ≡ τB − τA ,

where �kA,B(�r) is the wave vector for beam A or
B, respectively, and d�rA,B lies along the path
for beam A or B.
(a.)
The (undispersed) physical waves remain func-
tions of (�kA,B · �rA,B − ωt), even as these slow

phase variations occur. Use this fact to show that

physical �EA,B(Q)(t + τA,B) =

physical �EA,B(P )(t) .

(b.)
Using the result of part (a.), show that

�EA,B
Q (t + τA,B) = �EA,B

P (t) exp (iωτA,B) .

(c.)
At any other time t′, the result of (b.) also holds.
Choose t′ = t − τ . Show that

�EB
Q(t + τA) = �EB

P (t − τ) exp (iωτB) .

(d.)
The irradiance

I = 1
2

√
ε
µ | �EA + �EB |2

for the superposition of the two beams satisfies

2
√

µ
ε IP,Q = | �EA

P,Q|2+| �EB
P,Q|2+2Re

(
�EA∗

P,Q · �EB
P,Q

)

Using the results of (b.) and (c.), show that

IQ(t + τA) = IA + IB +

+ 1
2

√
ε
µ 2 Re

(
�EA∗

P (t) · �EB
P (t − τ) exp (iωτ)

)
,

where IA,B are the (time-independent and space-
independent) single-beam irradiances.
(e.)
Taking a long-time average (long compared to
the characteristic time over which the complex
electric field phases vary), obtain as a final step
the master equation for two-beam interference:

〈IA+B
Q 〉(τ) = IA + IB+

+ 1
2

√
ε
µ 〈2 Re

(
�EA∗

P (t) · �EB
P (t − τ) exp (iωτ)

)〉 ,

where 〈〉 denotes a long-time average, and IA+B
Q

is the combined irradiance at plane Q.
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61.
Please refer to the notation and results of the
previous problem. Define the correlation ΓAB(τ)
as

ΓAB(τ) ≡ 1
2

√
ε
µ 〈 �EA∗

P (t) · �EB
P (t − τ) exp (iωτ)〉 ,

and define the degree of partial coherence γAB(τ)
as

γAB(τ) ≡ ΓAB(τ)√
IAIB

.

(a.)
Show that the result of the last part of the
previous problem can be written

〈IA+B
Q 〉(τ) = IA + IB + 2

√
IAIB Re γAB(τ) .

(b.)
If the screen Q in a two-beam interference setup
deviates slightly from perfect perpendicularity
to the beams, deviations of order 10-100 oc-
cur in ωτ across the screen. For most sources
these deviations do not cause a significant change
in �EB

P (t − τ), but they do cause the phase of
exp (iωτ) to change dramatically. Correspond-
ingly there appear on the screen many light and
dark bands (“fringes”), at the center of which
the respective irradiances are Imax and Imin.
Define the fringe visibility V as

V ≡ Imax − Imin

Imax + Imin
.

If IA = IB , show that

V = |γAB(τ)| .

(c.)
As an experimentalist, suppose that you are re-
quired to analyze the extent to which a mystery
beam is polarized.

A standard approach would be to measure the
elements of its Stokes vector (by observing the
reduction in irradiance caused by four different
optical devices – see Problem 59); knowing the
Stokes vector, you could calculate the degree of
polarization V (Problem 59(b.)).

Instead you decide to send the beam into a
Michelson interferometer with two exactly equal-
length paths A and B. Observing the resulting
fringe pattern on screen Q, you measure the
fringe visibility V (as defined in part (b.) of this
problem).

Do you obtain any useful information about V
by measuring V? If so, what is the relationship
between the two?

62.
We wish to use the light of Betelgeuse (angu-
lar diameter 0.047 arc second), passed through a
600 nm filter, as the source for a double-thin-slit
Young’s interference experiment.
(a.)
Assuming an adequately narrow filter bandpass,
roughly estimate the maximum slit separation
(in m) that would yield an interference pattern
which isn’t too badly washed out, i.e. with a
fringe visibility V of order 1

2 .
(b.)
Assuming an adequately small slit separation,
roughly estimate the maximum filter bandpass
(in nm) that would allow us to observe at least
20 fringes. With this choice of bandpass, what
is the coherence length of the transmitted light?

63.
A monochromatic beam traveling in medium “0”
is normally incident upon a substrate “T”. A sin-
gle film “1” is interposed between the two media.
The refractive indices are, respectively, n0, n1,
and nT . You may assume that all materials have
the same magnetic permeability.
(a.)
Show that a film of thickness λ1/4 (where λ1

is the wavelength of light in the material i of
which the film is made) will reduce the re-
flectance of the substrate to zero, provided that
n1 =

√
n0nT .

(b.)
Prove that interposing a single film of thickness
λ1/4 will always reduce the reflectance of the
substrate, provided that n0 < n1 < nT .
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64.
Referring to the conditions of the previous prob-
lem, consider next the case of three films (“1”,
“2”, and “3”) interposed between the two me-
dia, such that film 1 adjoins medium 0 and film
3 adjoins medium T . Again, assume that all ma-
terials have the same magnetic permeability.
(a.)
Suppose that each film has thickness λi/4 (where
λi is the wavelength of the beam in the partic-
ular material of which that film is made). Show
that the reflectance of the substrate is reduced
to zero when

n1n3

n2
=

√
n0nT .

(b.)
An advantage of using three films instead of one
(as in the previous problem) is that the band of
wavelengths over which the reflectance is heavily
suppressed can be made much broader. (Your
expensive eyeglasses are coated with at least two
films.) According to Pedrotti×2 Fig. 19-7, this
benefit may be enhanced further if the middle
film (2) is doubled in thickness from λ2/4 to
λ2/2. In this case, what condition on n0, n1, n2,
n3, and nT reduces the reflectance to zero?

65.
Consider a high-reflectance stack of the type de-
picted in Pedrotti×2 Fig. 19-8. For specificity,
assume that the stack consists of six double lay-
ers of MGF2 (n = 1.38) and ZnS (n = 2.35).
For simplicity, assume that the medium from
which the light enters the stack (medium 0) and
the medium into which the light exits the stack
(medium T ) are vacuum. Again, assume that all
materials have the same magnetic permeability.
(a.)
Numerically, what fraction T of the incident ir-
radiance is transmitted by the stack?
(b.)
The stack is now modified as follows: the
upstreammost three double layers are flipped
around so that the stack indices are L(ow) H(igh)
L H L H H L H L H L. This is a Fabry-Perot in-
terference filter. It has a transmission maximum
at the wavelength for which it was designed, as
opposed to the transmission minimum achieved

by the configuration of part (a.). Calculate
the fraction T of the incident irradiance that is
transmitted by the modified stack.

3


